The ethical impacts of using intelligent chatbots in customer services: benefits and challenges
Main Article Content
Abstract
The growing use of intelligent chatbots in customer service, powered by artificial intelligence (AI) and natural language processing (NLP), is significantly transforming the way companies interact with users. These tools promise continuous, fast, and personalized assistance but raise major ethical concerns such as data privacy, algorithmic bias, transparency, and the potential replacement of human agents. The study adopts a mixed-methods approach (quantitative and qualitative). Structured questionnaires were administered to 150 participants to analyze their profiles, usage behaviors, perceptions, and ethical expectations. Data analysis was supported by a literature review on ethical AI principles, and processed using Excel with triangulation techniques to ensure validity. The main objective is to analyze the ethical impacts of using intelligent chatbots in customer service by identifying perceived benefits and challenges, and to propose recommendations for ethical and responsible adoption. Findings reveal that while users appreciate the benefits of chatbots (speed, availability, accessibility), they also express concerns about data protection, lack of transparency, absence of human oversight, and potential bias. Most respondents believe chatbots should complement, not replace human agents. Key ethical expectations include clearer explanations of automated decisions, bias reduction, and stronger regulatory frameworks. Chatbots hold great potential for enhancing customer experience, but their deployment requires a rigorous ethical framework. Transparency, human oversight, and algorithmic accountability must be strengthened to ensure that AI truly serves human interests.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
• Binns, R., Veale, M., Van Kleek, M., & Shadbolt, N. (2018). Justice algorithmique : Une taxonomie de l'équité dans la prise de décision automatisée. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW), 1–23. https://doi.org/10.1145/3278721
• Floridi, L., & Cowls, J. (2019). Un cadre universel pour une IA éthique : les principes fondamentaux. Nature Machine Intelligence, 1(1), 29–30. https://doi.org/10.1038/s42256-019-0035-z
• Gunning, D., Aha, D. W., & Darpa XAI Program. (2019). Intelligence artificielle explicable (XAI) : perspectives et défis. Journal of Artificial Intelligence Research, 65, 1–38. https://doi.org/10.1613/jair.1.11345
• Huang, M.-H., & Rust, R. T. (2018). Intelligence artificielle dans les services : une nouvelle frontière. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459
• Jobin, A., Ienca, M., & Vayena, E. (2019). Les principes éthiques de l'intelligence artificielle : une cartographie globale. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
• Klopfenstein, L. C., Delpriori, S., Malatini, S., & Bogliolo, A. (2017). Chatbots et services conversationnels : un état de l’art. Proceedings of the International Conference on Internet Science, 19–27. https://doi.org/10.1007/978-3-319-70284-1_3
• Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. New York University Press.
• Russell, S., & Norvig, P. (2016). Intelligence artificielle : Un point de vue moderne (3e éd.). Pearson Éducation.
• Suchman, L. A. (2007). Human-Machine Reconfigurations: Plans and Situated Actions (2e éd.). Cambridge University Press.